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ABSTRACT

An accurate and computationally efficient method of
moment solution together with a mode-matching technique for
the analysis of curved planar waveguide bends is described.
The method is applied to single and cascaded curved bends in
rectangular waveguides, quantum waveguides and microstrips.
The effect of the orientation of cascaded bends on the
transmission properties is examined.

I. INTRODUCTION

The mathematical problem of obtaining the modal solutions
of a curved waveguide bend has been treated by various
researchers over many years [e.g., 1-8]. In 1948 Rice [1]
formulated a matrix solution for curved rectangular waveguides
by expanding the transverse eigensolutions in sine and cosine
functions. He then used a limiting process to obtain
approximate solutions for bends with large radius of curvature.
Approximate modal solutions for a curved bend in a
rectangular waveguide have been obtained by Lewin [2] by
means of a perturbation analysis. Utilizing approximate
formulas for Bessel functions, Cochran and Pecina [3] solved
the appropriate characteristic equations for the propagating
modes in a curved waveguide. In a recent publication,
Accatino and Bertin [4] extended the approach of Cochran and
Pecina by transforming the ill-conditioned characteristic
equations for the evanescent modes in a curved rectangular
waveguide into stable ones and calculated the reflection
coefficient of curved E-plane bends in a rectangular
waveguide.

Curved waveguide bends have also been analyzed in related
areas such as acoustics and the recently emerged field of
nanostracture physics [e.g. 5]. For example, Furnell and Bies
[6] formulated a Ritz-Rayleigh variational procedure to analyze
a curved bend in an acoustical duct. Sols and Macucci [7] and
Lent [8], utilizing a finite-element method, have analyzed
curved bends in quantum waveguide structures with ballistic
quasi one-dimensional electron transport.

However, all the methods described abave are either
inaccurate (e.g., Rice [1]), tedious and/or computationally
intensive. In this paper a rigorous and efficient method of
moments analysis of curved waveguide bends is presented.
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II. THEORETICAL FORMULATION

Figure 1 shows a general parallel-plate waveguide with
electric or magnetic walls containing a curved bend
discontinuity. The dielectric medium inside the waveguide
may, in general, be an arbitrary (piece-wise continuous)
function of the transverse direction. In this paper, however,
only the case of a homogenecous dielectric medium is
considered. The analysis of the general case will be published
elsewhere.

Fig. 1:  Geometry of a curved bend in a parallel-plate waveguide.
The waveguide structure shown in Fig. 1 independently
supports TE- and TM-modes. The solutions of the TE- and
TM-modes in the parallel-plate waveguides are readily
obtained from the scalar wave equation satisfied by the
cotrresponding transverse electric or magnetic field component,
respectively. The modal solutions in the curved region are
conveniently found from the wave equation given in the
curved coordinate system (x,y,s=R@) [2], [9] where R is the
center radius of the bend (see Fig. 1). Inserting the modal
solutions of the form

Y(x.s) = fix) e ¥ M
into the wave equation leads to the eigenvalue equation
Lf = 4 (12 +k%u?|f =RP2f, u=x+R (2
ox | ox

with eigenvalues A, = R?B2 and eigenfunctions f(x). The
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scalar quantity y corresponds to the transverse electric field
component E, for TE modes and to the transverse magnetic
field component Hy for TM modes. Depending on the type of
mode (TE or TM) and the type of plates (electric or magnetic
walls), the boundary conditions are either of Dirichlet or
Neumann type.

In order to convert the eigenvalue problem given in (2) into
an equivalent matrix eigenvalue equation by means of the
method of moments [10], the inner product

<gh>= " _,ll_g(x)h(x)dx 3)

with weighting function 1/u is defined. This choice of inner
product makes the differential operator L together with the
given boundary conditions self-adjoint. According to the
method of moments the transverse field solution Ax) is
expanded into a set of complete basis functions b, (x) as

fo) =Y c,b, 0 @

n=0

and the inner product of the eigenvalue equation with an
appropriately selected complete set of testing functions £, (x)
is taken. Here, Galerkin’s procedure is employed where the
transverse eigensolutions ¢,(x) of the corresponding parallel-
plate waveguide are conveniently chosen as basis and testing
functions (b,=t,=6,). The resulting matrix eigenvalue equation
reads:

(k2P -8)e = R¥P*Qc (52)

with
P = ["200,,0,dx 0
O = [ L, 0

The integrals in (5d) can be efficiently computed by means of
the Fast Cosine Transform (FCT) [11].

In order to obtain the scattering parameters of the curved
bend structure, a mode-matching procedure [9] is employed at
the interfaces between the straight and curved sections. Here,
the mode-matching procedure is considerably simplified by the
choice of basis and testing functions in the method of moments
analysis and is simply given in terms of the matrices
containing the expansion coefficients ¢, for the transverse
eigenfunctions in the curved region [11]. Having computed
the scattering parameters of a single bend discontinuity, the
scattering parameters of waveguide structures containing
multiple bends are then obtained by applying a generalized
scattering matrix technique [12], [13].
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III. COMPUTATIONAL RESULTS

As part of the verification procedure for the method present-
ed here, a curved bend in a quantum waveguide bounded by
hard walls is considered. The analysis of the curved quantum
waveguide is equivalent to that of a curved bend in a parallel-
plate waveguide with electric walls and incident TE modes.
The transmission coefficient [12], [13] as a function of the
normalized phase constant is plotted in Fig. 2 and compared to
the finite-element solution obtained by Lent [8].
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Fig. 2:  Transmission coefficient as a function of the normalized
phase constant for 0=90° and R/ = 0.5, 0.65, 0.75, 1.0,
and 2.0.

As a second accuracy test, the reflection coefficient of an S-
shaped E-plane bend (Fig. 3a) and corresponding single E-
plane bend (U-shaped bend) (Fig. 3b) in a rectangular
waveguide has been calculated.
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Fig. 3: Cascaded 45° E-plane bends with R=8mm in a WR-75
rectangular waveguide: (a) S-bend; (b) U-bend; (c)
reflection coefficient.

As shown by Lewin [2], the characterization of rectangular
waveguides containing E- and H-plane bends can be reduced
to that of a corresponding parallel-plate waveguide
configuration. Included in Fig. 3 are the results given by
Accatino and Bertin [4]. This and the previous example
clearly illustrate the accuracy of our method.

The results for S- and U-shaped bends shown in Fig. 3
indicate that it may be critical how the two bends are
cascaded. In Fig. 4, cascaded H-plane bends are studied where
a straight waveguide section of length L is inserted in between.
With increasing length L the orientation of the cascaded bends
becomes less significant and is nearly independent for lengths
greater than the waveguide width over which the evanescent
modes excited at the junctions are sufficiently attenuated.
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Fig. 4: Cascaded 30° H-plane bends with R=15mm in a WR-90
rectangular waveguide: (a) S-type bend; (b) U-type bend;
reflection coefficient for (¢) L=0, (d) L=5mm, and (e)
L=25mm.

In order to appreciate the computational efficiency of the

‘method, the reflection coefficient calculations of the S-shaped

bend is shown in Fig. 5 for different numbers of basis
functions retained in the method of moments procedure.
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Fig. 5: Reflection coefficient of an S-shaped H-plane bend con-
figuration (Fig. 4c) (a) for 2, 3, 4, 5, and 10 basis func-
tions retained in the method of moments procedure, (b) as
function of the number of basis function at f=10GHz.

In the second application of the method presented here, the
double bend quantum waveguide configuration shown in the
inset of Fig. 6 has been studied and compared to the
corresponding structure with right-angle bends [12].
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Fig. 6: Conductance of a curved double bend (solid line) and
double right-angle bend (dashed line) in a quantum
waveguide structure; L=150nm, Rw=0.52, m"=0.067my,
and Ej=10meV [12].

Figure 6 shows that the position of the conductance resonances
[12] is nearly independent of the type of bend used. The
amplitudes of the anti-resonances, however, are noticeably
reduced with curved bends. .

In the final application, the accuracy of our previously
obtained perturbation solution for curved microstrip bends [9]
is examined.
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Fig. 7: Reflection coefficient for a curved microstrip bend with
o=90°, R/w=2, w=1.2mm, #=0.635mm, and €,=9.8 [9].
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It can be seen from Fig. 7 that the accuracy of the perturbation
solution in this example is sufficient.

IV. SUMMARY

An accurate method for analyzing single and multiple
curved bend discontinuities has been described and
applications to varies waveguide types have been shown. The
computed results for the scattering parameters converge very
rapidly with increasing number of expansion functions and
modes used in the method of moment and mode-matching
analysis, respectively. As a rule, only a few expansion terms
and modes need to be considered for accurate solutions so that
the method described here is computationally efficient and can
be implemented on an IBM AT or compatible desktop
computer.
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